Para encontrarmos numa equação de 1º grau com duas incógnitas, por exemplo,
4x + 3y = 0, os valores de x e de y é preciso relacionar essa equação com outra ou outras com as mesmas incógnitas. Essa relação é chamada de sistema.
Um sistema de equação de 1º grau com duas incógnitas é formado por: duas equações de 1º grau com duas incógnitas diferentes em cada equação. Veja um exemplo:
Para encontramos o par ordenado solução desse sistema é preciso utilizar dois métodos para a sua solução.
Esses dois métodos são: Substituição e Adição.
Método da subs
tituição
Esse método consiste em escolher uma das duas equações, isolar uma das incógnitas e substituir na outra equação, veja como:
Dado o sistema
, enumeramos as equações.
Escolhemos a equação 1 e isolamos o x:
x + y = 20
x = 20 – y
Agora na equação 2 substituímos o valor de x = 20 – y.
3x + 4 y = 723 (20 – y) + 4y = 72
60-3y + 4y = 72
-3y + 4y = 72 – 60
y = 12
Descobrimos o valor de y, para descobrir o valor de x basta substituir 12 na equação
x = 20 – y.
x = 20 – y
x = 20 – 12
x = 8
Portanto, a solução do sistema é S = (8, 12)
Método da comparação
Esse método consiste em determinar o valor de x das duas equações e depois comparar as igualdade.
Dado o sistema:
Descobrir o valor de x da primeira equação.
x+y=20
x=20-y
Descobrir o valor da segunda equação
3x+4y=72
3x=72-4y
x=72-4y
3
Agora, copáramos as equações
20-y=72-4y
3
60-3y=72-4y
3 3
60-3y=72-4y
4y-3y=72-60
y=12
Para descobrirmos o valor de x basta escolher uma das duas equações e substituir o valor de y encontrado:
x + y = 20
x + 12 = 20
x = 20 – 12
x = 8
Portanto, a solução desse sistema é: S = (8, 12).
Se resolver um sistema utilizando qualquer um dois métodos o valor da solução será sempre o mesmo.
FONTE: http://www.mundoeducacao.com.br/matematica/sistema-equacao.htm
OBS: método da comparação, foi eu que fiz.
Nenhum comentário:
Postar um comentário